The Effect of Intravenous Injection of Nalbuphine Hydrochloride on CO₂ Response Curve in Normal Volunteers

Byung Moon Ham, M.D. and Hee Jung Balk, M.D.

Department of Anesthesiology, College of Medicine, Seoul National University

Kwang Won Yum, M.D.

Department of Oral-Maxillofacial Surgery, School of Dentistry, SNU

Nalbuphine, a recently introduced agonist-antagonist analgesic is considered to have analgesic potency similar to morphine in common clinical doses and has been reported to possess an ceiling effect on respiratory depression and to be effective in reversing respiratory depression induced by oxymorphone or hydromorphone.

To evaluate the respiratory depression of nalbuphine hydrochloride, we use displacement of CO₂ response by a rebreathing method as the index of respiratory depression.

Eight healthy male subjects were given the nalbuphine at a dose of 0.1 mg/kg(nalbuphine group) or same volume of normal saline as a placebo(placebo group) intravenously, at interval of 2 weeks by a double blind test. We measured end-tidal PCO₂(Pₜ⁺CO₂), minute ventilation (Vₑ), tidal volume(Vₑ), and respiratory frequency(f) at 10 min, 30 min, 60 min and 90 min after the injection.

The linear regression equations of Vₑ in response to Pₜ⁺CO₂ 10 min, 30 min, 60 min and 90 min after injection are \[y = -11.3 + 0.34x(R = 0.66), \] \[y = -11.5 + 0.3x(R = 0.53), \] \[y = -9.85 + 0.33x(R = 0.61) \] and \[y = -11.8 + 0.37x(R = 0.67) \] in placebo group and \[y = -11.1 + 0.30x(R = 0.54), \] \[y = -13.1 + 0.35x(R = 0.64), \] \[y = -11.3 + 0.33x(R = 0.66) \] and \[y = -13.4 + 0.37x(R = 0.63) \] in nalbuphine group.

There were no significant differences in the slope of the CO₂ response curves between placebo group and nalbuphine group. But there were rightward displacements of the CO₂ response curves, which were significant rightward displacements at 60 min and 90 min after the injection(P<0.05).

These findings demonstrate that nalbuphine hydrochloride might be a respiratory depressant.

Key Words: Nalbuphine hydrochloride, Vₑ, Pₜ⁺CO₂, CO₂ response curve: Slope Rightward displacement
서 론

Opioids는 동통의 완화, 수술전 전정작용과 전통작용, 진신 혹은 근소 마취의 보조제로 사용되어 왔다. 최근에는 진신마취를 유도하고 유지하기 위해 다양을 정맥내 주사하여 주마취제로 사용하는 약제들이 많이 연구되어 임상에 활용되고 있다11.

최근 흡입마취의 부작용으로 인한 근기능이 제약적 으로 유해한 바, 근기능에 주로 opioids가 여러가지 장점들을 가지고 주용을 이루고 있으며, 이 장점으로는 첫째, 심혈관계의 혈액학적 안정성, 둘째, 흡입마취제의 요구량 감소, 세째, 수술 후 진통효과 등이 있다20.

진통효과는 더욱 크고, 부작용은 더욱 적은 진통제의 필요성이 계속 요구되어 오고 있으나, opioids 제제의 약제는 부작용으로 호흡악제 작용과 탑락성이 있어 그 사용에 제한을 받는다.

Nalbuphine hydrochloride(Nubain®)는 화학구조상 agonist analgesic인 oxymorphone과 antagonist인 naloxone와 판체가 있는 phenanthrene 계열의 혼합 agonist-antagonist analgesic로서 최근에 도입되어 국외에서 활발한 연구가 진행되면서 임상에 사용되고 있으나 국내에서는 아직 연구된 바 없다.

이 약제는 중등도의 통증 완화에 추천할 만한 약제이며, 피하, 근육 또는 정맥주사로 부여 가능하고49, 마취전처리제 뿐만 아니라70 근기능이의 한 약제로서 사용된다58.

Nalbuphine의 opioid 수용체에 대한 작용을 보면, 수측적추부마취증, 호흡억제, 다행증증의 기능을 가진 Mu 수용체에 부분적인 agonist로 작용하고, 척추부마취증, 진신의 기능을 가진 kappa 수용체에 agonist로 작용하며, 불쾌감, 환각, 혈관운동장 작용의 기능을 가진 sigma 수용체에의 효과가 없다. 이러한 이유로 nalbuphine은 morphone과 상호작용하는 진통효과를 갖고 탑락성이 거의 없으며90 호흡억제에 대한 최고산환효과를 갖고99 oxymorphone이나 hydromorphone에 의한 호흡억제를 여건시키는 효과가 있다11.

이에 저자들은 nalbuphine의 이와 같은 호흡작용에 대한 특수성에 관심을 갖고 nalbuphine의 소량 (0.1 mg/kg) 정주가 호흡에 미치는 영향을 알기위해 이산화탄소 반응곡선을 추적하여 이를 비교 관찰, 임상응용에 도움이 되고자 하였다.

연구재료 및 방법

본 연구의 목적과 과정을 충분히 이해한 24~29 (25.4±0.5)세의 성인 남자 8명의 지원자를 대상으로 하였으며, 평균 체중은 68±5.0 kg, 평균 신장은 172 ±2.8 cm, 평균 체표면적은 1.78±0.05 m²였다.

연구대상은 연구 12시간 전부터 alcohol, caffein 및 음료 등 호흡에 영향을 미친 수 있는 인자는 물론 모든 음식물의 섭취를 금하게 한 후 연구를 실시하였다.

연구대상은 조용한 방에 앉아있음 누워 심전도(lead II)를 지속적으로 관찰할 수 있게 하고 기초 측온과 역박, 혈압을 측정한 후 약물의 정주를 위하여 5% D/W의 정맥내 주입을 시작하고 약 30분간 흐름시켜 대상이 비교적 안정된 상태에 이르면 nalbuphine 0.1 mg/kg 혹은 placebo로 생리시험수를 같은 용액으로 2~3분에 걸쳐 서서히 정주하였고, 연구 실시시간은 2주가 되도록하여 double blind 방법을 사용하였다.

연구대상은 이산화탄소 홍수장치(soda lime 포함), Collins 9L Respirometer(W.A Collins Inc.), Normocap CO₂ & O₂ monitor(Datex Instrumentation), 두개의 one way valve, mouth piece, Foregger 마취기(Foregger Company)에 부착한 미리 고안한 호흡회로(Fig. 1)2)를 통해 nose clip을 부착하고 호흡시켜 호흡회로에 익숙하게 한 다음 정주 후부터 이산화탄소 홍수장치를 제거하고 재호흡으로 이산화탄소를 측정시켜 가며 일회호흡량(V₃), 분당 호흡수(f), 분시호흡량(VE) 및 호기밀 이산화탄소 분압(PETCO₂)을 각 10분간 Collins 9L Respirometer 및 Normocap CO₂ & O₂ analyzer에 측정기록하였다. 정주 후 20분에 다시 이산화탄소 홍수장치를 부착하고 이산화탄소를 제거한 후 호흡회로에 익숙하게 한 다음 이산화탄소 홍수장치를 제거하고 재호흡을 시켜가며 10분간 V₃, f, VE 및 PETCO₂를 측정하였다. 이를 계속 반복하여 정주 후 10분 30분, 60분, 90분에 V₃, f, VE 및 PETCO₂를 측정하였
Fig. 1. Schematic diagram of experimental circuit.

Table 1. Correction Factors for Gas Volumes for Correction of the Measured Volume to Body Temperature(37°C) Ambient Pressure and Saturated with Water(BTPS)*

<table>
<thead>
<tr>
<th>Correction factors</th>
<th>When gas temperature (°C) is</th>
<th>With water vapor pressure (torr) of</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.102</td>
<td>20</td>
<td>17.5</td>
</tr>
<tr>
<td>1.096</td>
<td>21</td>
<td>18.7</td>
</tr>
<tr>
<td>1.091</td>
<td>22</td>
<td>19.8</td>
</tr>
<tr>
<td>1.085</td>
<td>23</td>
<td>21.1</td>
</tr>
<tr>
<td>1.080</td>
<td>24</td>
<td>22.4</td>
</tr>
<tr>
<td>1.075</td>
<td>25</td>
<td>23.8</td>
</tr>
<tr>
<td>1.068</td>
<td>26</td>
<td>25.2</td>
</tr>
<tr>
<td>1.063</td>
<td>27</td>
<td>26.7</td>
</tr>
<tr>
<td>1.057</td>
<td>28</td>
<td>28.3</td>
</tr>
<tr>
<td>1.051</td>
<td>29</td>
<td>30.0</td>
</tr>
<tr>
<td>1.045</td>
<td>30</td>
<td>31.8</td>
</tr>
</tbody>
</table>

본 연구 결과를 통해 용당 250 ml의 산소를 마취기

역으로 slope와 \(P_{ET}CO_2 \) 60 mmHg일 때의 \(V_E(V_{ET}) \)의

변화를 paired Student’s t-test로 통계학적 검증을

하였고, p < 0.05를 유의한 수준으로 간주하였으며

본 연구 결과는 mean ± SEM로 표시하였다.

또한 Collins Respirometer의 가스온도는 제온보

더 낮기 때문에 Respirometer에 기록된 가스용적은

정상온도에서의 가스용적으로 변화시키야 하는 바,

ATPS(ambient temperature, pressure and satu-

rated with water)를 BTPS(body tempera-

ture, ambient pressure and saturated with water)

로 변화시키는 인자로는 Table 1을 참조하였으

다.

연구 성적

Placebo와 nalbuphine 정주 후 10분에 \(P_{ET}CO_2 \)

에 대한 \(V_E \)의 반응, 즉 이산화탄소 반응곡선은 pla-

cese군과 nalbuphine 군에서 상관관계 0.66과 0.54

의 상관관계를 보였으며, nalbuphine 군에서 기울기

가 placebo 군에 비해 약간 감소하였으나 각 군간에

유의한 차이는 없었다(Fig. 2).

정주 후 30분, 60분, 90분에 \(P_{ET}CO_2 \)에 대한 \(V_E \)의

반응은 상관관계 0.53 ~ 0.67 사이의 상관관계를 보였

으며, 기울기에 있어서 각각 placebo 군에 비해 유의

한 차이가 없었다(Fig. 3 ~ 5).

이산화탄소 반응곡선의 우측이동은 \(P_{ET}CO_2 \)가 60
Fig. 2. Changes of minute ventilation (\dot{V}_E) in response to end-tidal $CO_2 (P_{et}CO_2)$ at 10 min after injection.

\[Y = -11.3 + 0.34 \times (R = 0.66) \]

Fig. 3. Changes of minute ventilation (\dot{V}_E) in response to end-tidal $CO_2 (P_{et}CO_2)$ at 30 min after injection.

\[Y = -11.5 + 0.35 \times (R = 0.53) \]

Fig. 4. Changes of minute ventilation (\dot{V}_E) in response to end-tidal $CO_2 (P_{et}CO_2)$ at 60 min after injection.

\[Y = -9.85 + 0.33 \times (R = 0.61) \]

Fig. 5. Changes of minute ventilation (\dot{V}_E) in response to end-tidal $CO_2 (P_{et}CO_2)$ at 90 min after injection.

\[Y = -11.8 + 0.37 \times (R = 0.67) \]

mmHg일 때의 \dot{V}_E, 즉 $\dot{V}_{E\infty}$을 비교하였을 때, 정주 후 10분, 30분, 60분, 90분에 각 군의 $\dot{V}_{E\infty}$은 placebo 군에 비해 nalbuphine 군에서 모두 $\dot{V}_{E\infty}$이 감소하여 우측이동의 경향을 보였으나 60분, 90분에
고 참고

알코올 호흡에 미치는 영향을 연구하는 방법들 중에서 이산화탄소에 대한 호흡반응(respiratory response to carbon dioxide)가 가장 적합한 것으로 알려져 있다[14,15]. 이산화탄소 반응곡선에서 \(\text{P}_{\text{ET}} \text{CO}_2 \)와 \(V_e \)의 관계를 관찰하여 동일한 \(V_e \)를 얻기 위해 더 높은 \(\text{P}_{\text{ET}} \text{CO}_2 \)를 필요로 하는 경우, 이산화탄소 반응곡선이 우측으로 이동하거나 기울기(slope)가 완만해 졌다고 표현하고 이는 호흡이 억제되었음을 나타낸다[16]. 본 연구에서도 nalbuphine의 호흡억제 작용의 유무를 알기 위해 이산화탄소 반응곡선을 관찰하였다.

제의 이산화탄소 분압을 상승시키는 방법으로는 세가지가 있는데 첫째, 재호흡 방법으로 지속적으로 상승시키는 방법, 둘째, 고정된 이산화탄소 농도의 홍입으로 단계적으로 상승시키는 방법, 셋째, 흡입이산화탄소를 자동조절시스템으로서 임의적인 조절로 증가시키는 방법이다[12,14,17,18]. 둘째, 세째 방법은 이산화탄소 분압증가로 연구대상이 심한 불편감을 느끼는 반면, 재호흡 방법은 실험대상에게 불편함을 덜 주고 이산화탄소 분압 상승을 신속히 성취할 수 있고, 실험방법이 용이하며, 자료를 지속적으로 제공하고 반복실험이 가능하다는 장점이 있으나 단점으로는 평형조건을 충족치 못하여 이산화탄소 반응곡선이 사실보다 약간 우측으로 이동 표시되며 기울기가 약간 완만해질 수 있다. 본 연구에서는 재호흡 방법을 택하여 placebo 군과 상대적으로 비교하였다.

호흡에 영향을 미치는 것으로는 이산화탄소에 의한 다른 요소들 즉 산소결핍, 대사성 산혈증, 운동, 욕제적 자극 그리고 정신적 자극 등이 있으므로[20], 본 연구에서는 조용한 방에서 아무런 자극없이 실시하였고, 전 연구과정은 통합산소농도 0.3~0.5로 유지하였 다.

뇌조직의 이산화탄소 분압의 척도로서는 동맥혈 이산화탄소 분압보다는 내경정맥 이산화탄소 분압이 더 좋으나 이는 실시간 이상으로 동일한 대상에 반복 실시하기가 힘들으며, 또한 동맥혈 이산화탄소 분압도 여러번 측정하기 어렵고, 호기말 이산화탄소 분압이 거의 정확하게 동맥혈 이산화탄소 분압을 반영하므로[21,22], 가장 간단하고 가장 쉬운 이산화탄소 분압 측정방법인 호기말 이산화탄소 분압 측정방법을 택하였다.

약제가 호흡에 미치는 영향을 비교하기 위해서는 분시호흡량이나 폐포환기량 모두 좋은 결과를 제공할 수 있으며, 분시호흡량의 변화가 폐포환기량의 변화보다 호흡조절체계의 변화정도를 더 잘 반영한다고 하므로[14], 본 연구에서는 분시호흡량을 측정하여 비교 연구하였다.

Nalbuphine은 정맥주사 후 2~3분에 진통효과가 나타나며 30분에 최고 효과를 보이며 작용시간이 2시간 30분 가량 지속되고[16] (Tammisto and Tigerstedt, 1977), nalbuphine의 진통강도는 morphine의 0.7배라는 보고에서부터 동일하다는 보고에 이르기까지 다양하며[24,25], pentazocine의 3배라고 한다[46].

또한 nalbuphine은 morphine 같은 탈석성이 없고 독성이 거의 없으며 morphine보다 부작용과 내성성이 적어 약물자극이 만성동종으로 인해 morphine를 장기 사용하는 환자에게 morphine 대신 사용할
수 있다고 한다8,9). 본 실험에서는 8명 중에서 4명은 전체 부작용이 없었고 오심은 3명이, 구토는 1명이, 어지러움은 3명이 호소하였다. 또한 nalbuphine은 실험관찰의 안정성, 숙후 강력한 전통효과, 최소의 호흡억제 작용으로 사례와 하혈압을 일으키는 morphine 보다 균형있게 유용하다고 하였다8,9).

Nalbuphine의 호흡에 미치는 영향에 대한 많은 연구가 진행되어 오고 있는데, 최근 진행한 지원자를 대상으로 한 연구에서 nalbuphine은 동일응용량 10 mg/70 kg에서 호흡억제작용이 morphine과 동일하다고 하며, 30 mg/70 kg 이상에서 호흡억제에 대한 최고 상한효과가 있다고 한다. 특히 연구한 결과에서 sever nalbuphine은 호흡억제 작용이 있다고 하였으며 대량사용에서 더 이상의 호흡억제가 일어나지 않았다28). 1982년 6명의 진경한 남자를 대상으로 한 연구에서 nalbuphine는 morphine과 비슷한 정도로 이산화탄소 반응갑선을 우축으로 이동시키며, 점차 중량을 시켜본 결과 morphine은 이산화탄소 반응갑선을 더욱 우축이동시키고 기울기의 감소를 보였으나 nalbuphine은 더 이상의 우축이동이나 기울기감소가 없었다고 하였다27). Klepper등31)는 마취중인 사람에서 연구한 결과 골육에서는 morphine 보다 더욱 역제를 일으키고, 일상상용량에서는 비슷한 정도로, 대량에서는 morphine 보다 덜하게 호흡억제를 일으킨다고 하였다. Stephen 등은 자발호흡으로 마취중인 환자에서 연구한 결과 nalbuphine(0,2 mg/kg)은 meperidine(0,5 mg/kg)과 비슷한 정도로 호흡억제를 일으킨다고 하였으며, Julien에 의한 연구에서도 nalbuphine 0,1 mg/kg가 이산화탄소 반응갑선을 기울기의 변화없이 우측이동시켜 호흡억제작용이 있으며 청기량 0,5 mg/kg와 1,0 mg/kg에서 더 이상의 호흡억제는 일어지지 않는다고 하였다30).

본 연구에서도 nalbuphine 0,1 mg/kg를 진경한 지원자에게 정맥내 주사하여 이산화탄소 반응갑선을 placebo 군과 비교 연구한 결과 정후 10분, 30분, 60분, 90분에 각각 기울기의 변화는 거의 없었고, 모두 우축이동하는 경향을 보였으며 60분, 90분에서 통계적으로 유의한 것으로 나타났다. 이는 아래에서 언급한 호흡억제 작용에 대한 각 연구결과들과 일치하는 결과이며 또한, narcotics는 이산화탄소 반응갑선의 기울기는 거의 변화시키지 않으면서 우축이동을 시킨다고 한 여러 연구들과 일치한다고 하겠다31).

본 연구결과, 저자들은 nalbuphine(0,1 mg/kg) 정주가 호흡억제를 일으킨다고 보며, 따라서 호흡억제 정도를 파악하기 위하여 임상에서 훈련 사용하는 morphine과의 비교 연구가 필요하다고 사료한다.

결론

Nalbuphine 0,1 mg/kg 정주가 호흡운동에 미치는 영향을 알기 위해 nalbuphine과 같은 웅적 Impress of placebo를 정주한 후 10분, 30분, 60분, 90분에 각각 $P_{ET}CO_2$, V_E, V_T, f를 측정하고 이산화탄소 반응갑선을 추적하여 다음과 같은 결론을 얻었다.

1) $P_{ET}CO_2$에 대한 V_E의 반응 즉 이산화탄소 반응갑선은 placebo군(10분, 30분, 60분, 90분)과 nalbuphine 군(10분, 30분, 60분, 90분)에서 각각 $y = -11.3 + 0.34x(R = 0.66)$, $y = -11.5 + 0.35x(R = 0.53)$, $y = -9.85 + 0.33x(R = 0.61)$, $y = -11.8 + 0.37x(R = 0.67)$과 $y = -11.1 + 0.30x(R = 0.54)$, $y = -13.1 + 0.35x(R = 0.64)$, $y = -11.3 + 0.33x(R = 0.66)$, $y = -13.4 + 0.37x(R = 0.63)$으로 이들 각 군간에 유의한 변화가 없었다.

2) $P_{ET}CO_2$가 60 mmHg일 때의 V_E($V_{E,m}$)는 nalbuphine 군에서 모두 감소하여 이산화탄소 반응갑선 우축이동의 경향을 보였으며 60분, 90분에서 통계적으로 유의하였다($p < 0.05$).

이상의 결과로 nalbuphine(0,1 mg/kg) 정주가 이산화탄소 반응갑선을 우축이동시키며 따라서 호흡억제 작용이 있다는 것을 알 수 있다.

참고 문헌

3) Miller RD: Anesthesia. 2nd ed, New York, Church-ill Livingstone, 1986
4) Tammisto T, Tigerstedt L: Comparison of the an-
algesic effects of intravenous nalbuphine and pentazocine in patients with postoperative pain.
16) 이진일, 박일용: Remeflin의 호흡촉진 작용의 기전에 관한 실험적 연구. 대한마취과학회지 9: 9, 1976
20) Gray JS: Multiple factor theory of control respiratory ventilation. Science 103: 739, 1946