A 59-year-old man diagnosed with obstructive hydrocephalus was scheduled for an ETV. The patient had a medical history of well-controlled diabetes mellitus and hypertension that was being treated with an angiotensin receptor blocker, a calcium channel blocker, and a beta blocker. The body mass index was 33.8, but he had no respiratory symptoms, including sleep apnea. A preoperative chest X-ray showed mild cardiomegaly but electrocardiography and echocardiogram findings were normal. The patient's symptoms were amnesia, gait disturbance, and urinary incontinence that had persisted for 5 months; preoperatively, he was alert and cooperative and had no problem communicating. The preoperative vital signs were: blood pressure, 110/70 mmHg; heart rate, 59 beats/min; respiratory rate, 18 breaths/min; and oxygen saturation, 96%. Since the appearance of the patient suggested a possible difficult intubation, a video laryngoscope was used for tracheal intubation after induction of general anesthesia with 150 mg propofol 1%, 40 mg lidocaine 2%, and 60 mg rocuronium. The vocal cord was clearly visible on the video laryngoscope and the intubation was accomplished without trauma or other difficulties. Anesthesia was maintained with 5% desflurane and 0.02 µg/kg/min remifentanil, and air with 50% oxygen. The surgery lasted 2 hours and required no additional muscle relaxants. During the surgery, there was sudden and sustained hypotension (mean blood pressure 52–57 mmHg) with bradycardia (heart rate 45–55 beats/min) that did not respond well to ephedrine; these complications began about 10 min after the beginning of the surgery and lasted for 25 min until a dopamine infusion was administered that restored normal blood pressure. Remifentanil infusion was discontinued at the onset of hypotension and bradycardia. After the purge of volatile agents at the end of the surgery, the train of four (TOF) count was 4, and the ratio was 50%, so 2 mg/kg of sugammadex was injected. The patient recovered muscle power within a few minutes, showing firm hand grip, head elevation, and mouth opening, and was fully obeying verbal commands, but was not opening his eyes. As he was alert and cooperative at that point and no other neurologic deficit was observed, the neurosurgeons thought that the inability to open his eyes was not related to the surgery. We relieved the bandage on the head in order to reduce the chance of unintended pressure or tension on the forehead, and suggested that further neurologic examinations be done after full recovery from anesthesia. Spontaneous respiration was present, showing expired tidal volumes reaching 500 ml each time, but was tachypneic; the patient's respiratory rate ranged from 40 to 50 breaths/min. This condition continued for 5 min, at which time the patient was extubated and transferred to the PACU under mask ventilation. The patient showed signs of inspiratory stridor, chest retractions, and hoarse voice after the extubation. The patient's accessory respiratory muscles were not involved in the hyperventilation. There was no crackle or wheezing clear on auscultation besides the inspiratory stridor, but the findings were not clear on account of the hoarse voice and the rapid and dynamic ventilation. An additional 2 mg/kg of sugammadex was injected in the PACU under the theory that the patient's upper airway was obstructed because of possible residual paralysis but the condition did not change. The patient was fully responsive to verbal commands but was still unable to open his eyes or hold his breath and he complained of feeling like he was choking despite the hyperventilation. Arterial blood gas analysis (ABGA) at that point showed: pH, 7.35; pCO
2, 37 mmHg; pO
2, 76 mmHg; HCO
3, 20.4 mmol/L; and O
2 saturation, 94%. The vital signs at that point were: blood pressure, 150/90 mmHg; heart rate, 110 beats/min; and respiratory rate, 44 breaths/min. Since tachypnea (40–50 breaths/min) persisted for 20 min in the PACU and oxygen saturation started to drop under 95%, 200 mg thiopental sodium and 100 mg succinylcholine were injected and endotracheal intubation was performed. Endotracheal suction was done immediately after intubation and there was no sputum or discharge. Auscultation right after the re-intubation sounded smooth, without crackle or wheezing, and the oxygen saturation rapidly corrected to 100%. Tachypnea persisted even under sedation after the succinylcholine wore off, so a central cause was suspected. Computed tomography (CT) revealed a massive pneumocephalus with pneumoventricle and hydrocephalus (
Fig. 1). A chest X-ray taken after the brain CT showed no pathologic findings such as pulmonary edema, congestion, or pneumothorax. On the neurosurgeon's recommendation, the patient was transferred to the intensive care unit and was kept there for three days under mechanical ventilation with sedation with midazolam, cisatracurium, and rocuronium until the pneumocephalus and tachypnea spontaneously resolved. Follow-up chest radiographs were taken over the next 3 weeks and showed nothing abnormal. According to a pulmonology consultation, the tachypnea was not likely to have originated from pulmonary problems. ABGA results stayed within normal limits under fully controlled mechanical ventilation but showed hypoxemia when the patient gained spontaneous respiration during the sedative period before the resolution of the pneumocephalus. Since the follow-up chest X-rays showed no abnormal findings, pulmonary embolism evaluation including embolism CT and laboratory examinations, which also showed nothing abnormal, were done on the recommendation of a pulmonologist. When a follow-up brain CT showed resolution of the pneumocephalus on the 3rd day after the surgery, sedative and neuromuscular blocking agents were discontinued and the mechanical ventilation mode was switched to synchronized intermittent mandatory ventilation. The respiratory rate at that point ranged from 15 to 20 breaths/min and ABGA results remained normal when the patient gained consciousness and self-respiration, so the endotracheal tube was extubated. The patient is now (30 days post-operation) in the general ward; he is mentally alert and has stable vital signs but still is unable to open his eyes because of bilateral ptosis and is receiving conservative treatment.