Amniotic fluid embolism is a fatal syndrome that takes place during pregnancy or during or after delivery. Amniotic fluid embolism was firstly described in 1926 [
1], and it was recognized as a syndrome by Steiner and Lushburgh [
2] as fetal debris were found within the pulmonary blood vessels of the parturient women who died during labor by similar clinical characteristics. Although it was reported that the incident rate was 1 out of 8,000-15,200 live births [
3] and the mortality was in the range of 61-86% [
3,
4], the mortality was decreased to 13.3-44.0% according to a recent study. It is thought that this trend may be because the diagnosis and treatment have been advanced and only fatal cases were reported selectively. Amniotic fluid embolism holds 5-15% of the overall causes of maternity deaths, and it leaves permanent neurological damage to 61% of the parturient women and 50% of the newborn children [
4]. Many have been known as the risk factors of amniotic fluid embolism, but parturient women over the age of 35, Cesarean section, forceps and fetal suction, placenta previa, abruptio placentae, eclampsia, and fetal distress syndrome were verified as the risk factors by a large scale research that was carried out recently although the correlation among them has not been understood clearly [
7]. The major clinical characteristics include cardiovascular collapse accompanied by severe hypotension and arrhythmia, cyanosis, respiratory distress, pulmonary edema or acute respiratory failure syndrome, respiratory arrest, consciousness fluctuation, and massive hemorrhage by DIC. Among these, the incidents of hypotension, respiratory failure, and cyanosis is almost 100%. The major causes of maternal death are cardiac arrest, massive hemorrhage by DIC, acute respiratory failure syndrome, and multiple organs dysfunction. According to the report by Lewis [
8], 11 of the 17 parturient women who had experienced amniotic fluid embolism complained of prodromal symptoms such as dyspnea, chest pain, chilliness, restlessness, the feeling of being pierced by a pin, nausea and vomiting. The time interval between the observations of these symptoms to the women's collapse varied, ranging from several minutes to 4 hours. In this case report, even though the parturient woman showed the symptom of dry coughing from the morning of the operation day onwards, it was not very severe and no other specific symptom was observed. The causes of the prophase hypoxia, which is the most representative clinical characteristic of amniotic fluid embolism, are severe ventilation-perfusion mismatch by pulmonary vasoconstriction and bronchospasm, and those of the anaphase hypoxia include pulmonary edema by left ventricular failure and nonpsychogenic pulmonary edema that is related to the increase of the capillary permeability. Suchlike hypoxia may be the cause of heart failure and neurologic damage. The parturient woman in this case report showed an oxygen saturation of 94% at the time of entering the operation room, which might have been the indication of hypoxia that occurred already, rather than the error by hypothermia. In addition, from the chest radiograph taken in the operation room after the fetus was delivered (
Fig. 1), severe pulmonary edema at both lungs and normal central venous pressure were found, though the pulmonary arterial pressure was not measured. Thus, it is assumed that the hypoxia might have been caused by pulmonary edema due to the left ventricular failure or the increase of the pulmonary capillary permeability, rather than by the pulmonary vasoconstriction at the initial stage. The acute cardiovascular collapse can be explained by the biphasic model suggested by Clark [
9]. Right ventricular failure can take place at the initial stage by the pulmonary vasoconstriction and pulmonary hypertension due to the secretion of endogenous mediators, which was proved in a number of reports. Shechtman et al. [
10] reported that acute right ventricular failure accompanied by severe pulmonary hypertension, left deviation of the atrial, and ventricular septum was found from the transesophageal echocardiography performed within 30 minutes after the occurrence of amniotic fluid embolism. A large amount of ascites was also found after the laparotomy in our case, which is thought to be the secondary result of the right ventricular failure. As the operation moved on to the anaphase, the pulmonary hypertension did not continue, but it was shifted to left ventricular failure, which might have been caused mainly by the decreased filling of the left ventricle following the enlargement of the right ventricular enlargement. Other causes of myocardial failure that are known include myocardial ischemia due to hypoxia, decreased blood flow in coronary artery due to decreased cardiac output, and direct myocardial depression by the substances in amniotic fluid such as endothelin. The blood pressure of the parturient woman in our report was decreased after the spinal anesthesia, which could have resulted from the high level of sensory block to the T4 spine, but it could be probably because of the decrease of the general vascular resistance following the left ventricular failure. DIC is also one of the factors that can cause hypovolemic shock, and it is found in 50% of the parturient women with amniotic fluid embolism. The mechanism of DIC is not clear, but it is known by a previous animal experiment that amniotic fluid is related to the thromboplastin-like effect, platelet aggregation, and the activation of complement reaction. In addition, Lockwood et al. [
11] discovered a large amount of tissue factors in amniotic fluid and explained the triggering of blood coagulation and consumptive coagulopathy caused by the activation of extrinsic pathway and factor X. DIC, which is clinically characterized by continuous blood loss, can take place in any stage of amniotic fluid embolism, from the initial stage to the terminal stage. In this case report, the heart was temporarily recovered by the cardiopulmonary resuscitation after the cardiac arrest, but the prognosis could become worse as hypovolemic shock took place due to the DIC afterward. In conclusion, the main causes of the maternal death of the parturient woman are thought to be the hypotension by the combined effect of the left ventricular failure, the decrease of the general vascular resistance due to the spinal anesthesia and continued blood loss by DIC, and pulmonary failure by the severe pulmonary edema. The etiology of amniotic fluid embolism is not clear yet. The pathway of amniotic fluid influx to the maternal circulatory system includes the uterine cervical vein, damaged uterine site, and placental site. In early studies, pulmonary vascular occlusion was considered as the main etiology of amniotic fluid embolism, but various clinical characteristics of amniotic fluid embolism were hardly explained by the mechanism and it was not verified by animal experiment [
12], implying that there might be another mechanism rather than the mechanical occlusion. Hammerschmidt et al. [
13] mentioned that activation of complements and granulocytes caused the pulmonary vascular occlusion. Now, the secretion of primary or secondary endogenous mediators following the amniotic fluid inflow to the maternal circulatory system is considered as the major etiology of amniotic fluid embolism based on several reports. The known mediators include histamine, bradykinin, endothelin, leukotriene, and arachidonic acid metabolites. These immunological factors can be supported by the fact that amniotic fluid embolism is found more frequently among the parturient women who have conceived a male fetus and with the history of drug allergy.
Amniotic fluid embolism is diagnosed clinically after excluding other diagnoses. In other words, amniotic fluid embolism can be strongly suspected in a pregnant woman or a puerperal woman, immediately after the delivery, with cardiovascular collapse as well as respiratory failure, DIC, and convulsion, excluding anaphylaxis, septisemia, pulmonary embolism, myocardial infarction, perinatal cardiomyopathy, and hemorrhagic shock (atony, uterine rupture, and abruptio placentae). Blood test, chest radiography and echocardiography can help, but they are nonspecific. Although in many studies amniotic fluid tissue was found in the blood aspirated at the terminal of the pulmonary artery catheter installed in parturient women who were diagnosed as having amniotic fluid embolism [
14], the amniotic fluid tissue was found in only about 50% of the parturient women in the study of Clark et al. [
4], as well as in other studies. Moreover, the component of amniotic fluid is also found among the women who do not have amniotic fluid embolism or the women who are not pregnant. Hence, that a component of amniotic fluid is found in a maternal circulatory system does not necessarily mean that amniotic fluid embolism has occurred. However, the probability of amniotic fluid embolism is increased in the case where there are the clinical characteristics that suggest amniotic fluid embolism. Also, in the parturient woman in this case, the diagnosability was increased since a great amount of amniotic fluid component was found in the pulmonary blood vessels, as well as the clinical characteristics of amniotic fluid embolism. Beside this, another known method of amniotic fluid embolism diagnosis is to measure zinc coproporphrin, sialyl Tn antigen, tryptase, and complement factors in the peripheral blood of a parturient woman, but more research is required for it. The treatment is performed symptomatically depending on the symptoms of the patient and the basic direction of the treatment is maintenance of the appropriate oxygenation level and blood pressure, and correction of the coagulopathy. Firstly, for the hypoxia, tracheal intubation should be immediately carried out and positive-pressure ventilation with oxygen of high concentration should be performed so as to maintain the oxygen saturation higher than 90%. For the hypotension and the shock, the preload should be increased by means of rapid injection of a crystalloid solution. Since an overdose of fluid can worsen the heart failure at this time, it is helpful to monitor by means of pulmonary catheter or electrocardiography. In the case of a serious hypotension which does not respond to a fluid treatment, vasopressors such as norepinephrine or cardiac inotropic agents such as dopamine, dobutamine, and milrinone can be used. When a large amount of hemorrhage occurs due to DIC, packed red blood cells should be primarily transfused to supply oxygen to the tissue appropriately. Platelets, fresh frozen plasma, and cryoprecipitate also need to be transfused. Among them, cryoprecipitate has been known to help the patient to recover the cardiopulmonary and hematological state rapidly by enhancing the removal of antigenic and toxic substances such as amniotic fluid since it contains fibronectin. When cardiopulmonary arrest takes places during the clinical course, cardiopulmonary resuscitation should be immediately carried out and cesarean section should be performed as early as possible in order to improve the prognosis of the parturient woman and the fetus. Since the gravid uterus represses the venous return by the aortocaval compression, quick delivery of the fetus makes the cardiopulmonary resuscitation more effective. In addition to these, other treatments are available including aprotinin, serine proteinase inhibitor, cardiopulmonary bypass, pulmonary embolectomy, hemofiltration, and inhalation of nitric oxide gas, etc. Recently, a case where extracorporeal membrane oxygenation showed a good result in a parturient woman with amniotic fluid embolism who had a cardiac arrest was reported, and it was newly suggested as a treatment [
15].
In conclusion, as experienced in this case, amniotic fluid embolism is rare, but it is a rapidly developing, fatal disease. However, this disease is hard to diagnose in its onset, and the treatment is still difficult. Thus, a prompt and positive treatment should be carried out if there is a parturient woman in whom a sudden cardiopulmonary collapse, respiratory failure, and hemorrhage are found. Particularly when cardiac arrest takes place, cardiopulmonary resuscitation should be carried out immediately and the fetus should be delivered at the same time in order to improve the prognosis of the parturient woman and the fetus. It must be noted that even after the parturient woman has recovered from the cardiac arrest, neurologic damage caused by hypoxia can still take place.