Korean J Anesthesiol Search

CLOSE


Korean Journal of Anesthesiology 2003;45(2):265-270.
DOI: https://doi.org/10.4097/kjae.2003.45.2.265   
The Effects of Perfluorocarbon on Respiratory Mechanics and Pulmonary Gas Exchange with Methacholine-induced Bronchoconstriction in Cats.
Ji Yeong Kang, Ji Yeon Bang, Pyung Hwan Park
Department of Anesthesia and Pain Medicine, Ulsan University College of Medicine, Asan Medical Center, Seoul, Korea. phpark@amc.seoul.kr
Abstract
BACKGROUND
Perfluorocarbon (PFC) liquids have high oxygen carrying capacity and relatively low surface tension allowing them to spread evenly through the diseased lung, especially in the case of adult respiratory distress syndrome. But few studies have demonstrated the effects of PFC on a bronchoconstriction model. The aim of this study was to investigate the effects of PFC on pulmonary mechanics and gas exchange in methacholine-induced bronchoconstricted cats using a flow interruption technique.
METHODS
Twenty male cats were divided into four groups; control group (group C, n = 5), PFC group (group P, PFC 5 ml/kg, n = 5), methacholine group (group M, 25 microgram/kg/min, n = 5), PFC and methacholine group (group MP, n = 5). Respiratory pressure using a flow interruption technique was measured immediately after stabilizing the heart rate and blood pressure 0, and 15, 30 and 60 min after the start of the intratracheal administration of PFC and/or methacholine infusion, depending on the group. Arterial blood gas analysis was done to compare arterial partial oxygen pressure among the groups at the time of measuring the pressure values. The pressure data was transferred to a personal computer and analyzed using ANADAT software program. Respiratory, airway and tissue viscoelastic pressure were calculated. Statistical analysis was done by ANOVA and statistical significance was defined as P <0.05.
RESULTS
Group M and MP showed significantly increased airway pressures compared with group C (P <0.05), but there was no difference among the groups in terms of viscoelastic pressure. Arterial blood gas analysis showed that group P and MP had lower arterial partial oxygen pressures than group C (P <0.05).
CONCLUSIONS
This study demonstrates that the intratracheal administration of PFC in a bronchoconstriction cat model increases airway pressure more than tissue viscoelastic pressure, and decreased arterial oxygen partial pressure. We conclude that the intratrachel administration of PFC is not to be recommended in bronchoconstrictive situations.
Key Words: airway resistance; partial liquid ventilation; perflubrocarbon (PFC); viscoelastic resistance


ABOUT
ARTICLE CATEGORY

Browse all articles >

BROWSE ARTICLES
AUTHOR INFORMATION
Editorial Office
101-3503, Lotte Castle President, 109 Mapo-daero, Mapo-gu, Seoul 04146, Korea
Tel: +82-2-792-5128    Fax: +82-2-792-4089    E-mail: journal@anesthesia.or.kr                

Copyright © 2024 by Korean Society of Anesthesiologists.

Developed in M2PI

Close layer
prev next