1. Tanner WP Jr, Swets JA. A decision-making theory of visual detection. Psychol Rev 1954; 61: 401-9.
2. Lusted LB. Signal detectability and medical decision-making. Science 1971; 171: 1217-9.
7. Sonego P, Kocsor A, Pongor S. ROC analysis: applications to the classification of biological sequences and 3D structures. Brief Bioinform 2008; 9: 198-209.
9. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 2013; 4: 627-35.
10. Obuchowski NA. Receiver operating characteristic curves and their use in radiology. Radiology 2003; 229: 3-8.
11. Obuchowski NA. ROC analysis. AJR Am J Roentgenol 2005; 184: 364-72.
12. Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 2007; 115: 654-7.
13. Muller MP, Tomlinson G, Marrie TJ, Tang P, McGeer A, Low DE, et al. Can routine laboratory tests discriminate between severe acute respiratory syndrome and other causes of community-acquired pneumonia? Clin Infect Dis 2005; 40: 1079-86.
14. Metz CE. Basic principles of ROC analysis. Semin Nucl Med 1978; 8: 283-98.
15. McClish DK, Powell SH. How well can physicians estimate mortality in a medical intensive care unit? Med Decis Making 1989; 9: 125-32.
16. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29-36.
17. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988; 44: 837-45.
18. Zhou X-H, McClish DK, Obuchowski NA. Statistical methods in diagnostic medicine. New York, John Wiley & Sons. 2002.
19. Metz CE. ROC methodology in radiologic imaging. Invest Radiol 1986; 21: 720-33.
20. Jiang Y, Metz CE, Nishikawa RM. A receiver operating characteristic partial area index for highly sensitive diagnostic tests. Radiology 1996; 201: 745-50.
21. Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983; 148: 839-43.
22. López-Ratón M, Rodríguez-Álvarez MX, Cadarso-Suárez C, Gude-Sampedro F. OptimalCutpoints: An R package for selecting optimal cutpoints in diagnostic tests. J Stat Softw 2014; 61: 1-36.
23. Youden WJ. Index for rating diagnostic tests. Cancer 1950; 3: 32-5.
25. Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr 2007; 96: 644-7.
27. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993; 39: 561-77.
29. Greiner M. Two-graph receiver operating characteristic (TG-ROC): update version supports optimisation of cut-off values that minimise overall misclassification costs. J Immunol Methods 1996; 191: 93-4.
30. Habibzadeh F, Yadollahie M. Number needed to misdiagnose: a measure of diagnostic test effectiveness. Epidemiology 2013; 24: 170.
31. Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics 2005; 21: 3940-1.
33. Goksuluk D, Korkmaz S, Zararsiz G, Karaagaoglu AE. easyROC: an interactive web-tool for ROC curve analysis using R language environment. R J 2016; 8: 213-30.