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Background: The primary site of action of pregabalin, i.e. the α-2-δ subunit of the voltage-dependent calcium 

channel, is located at the dorsal root ganglion and dorsal horn of the spinal cord. Therefore, the epidural admini

stration of pregabalin could have advantages over oral administration. However, the possibility of its neurotoxicity 

should be excluded before any attempt at epidural administration. We evaluated the neuronal safety of epidurally-

administered pregabalin by observing the sensory/motor changes and examining the histopathology of spinal cord 

in rats.

Methods: Sixty rats of 180-230 g were divided into three groups; 3 mg of pregabalin dissolved in 0.3 ml saline (group 

P, n = 20), 0.3 ml 40% alcohol (group A, n = 20), or 0.3 ml normal saline (group N, n = 20) was administered epidurally 

to the rats in each group. Pinch-toe test, motor function evaluation, and histopathologic examination of vacuolation, 

chromatolysis, meningeal inflammation, and neuritis were performed at the 1st, 3rd, 7th, and 21st day after each 

epidural administration.

Results: All rats enrolled in group P, like those in group N, showed neither sensory/motor dysfunction nor any 

histopathological abnormality over the 3-week observation period. In contrast, in group A, 80% of the rats showed 

abnormal response to the pinch-toe test and all rats showed decreased motor function during the entire evaluation 

period. In addition, all histopathologic findings of neurotoxicity were observed exclusively in group A. 

Conclusions: The epidurally administered pregabalin (about 15 mg/kg) did not cause any neurotoxic evidence, in 

terms of both sensory/motor function evaluation and histopathological examination in rats. (Korean J Anesthesiol 

2012; 62: 57-65)
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Introduction

Pregabalin (S-3-aminomethyl-5-methylhexanoic acid, 

LyricaⓇ, Pfizer, NY) is used for ameliorating either neuropathic 

or inflammatory pain [1-3]. Its analgesic effects act through 

the α-2-δ subunit of high voltage-activated N-type calcium 

channel, which is distributed primarily in the dorsal horn of 

the spinal cord and the presynaptic neuron of the dorsal root 

ganglion [4-7]. It has been shown that, when administered 

epidurally, ziconotide (i.e. one of calcium channel blockers) 

had better analgesic effects, reduced narcotic dose, and 

improved quality-of-life [4-8]. In addition, in animal studies, 

neuraxial administration of gabapentin was therapeutically 

effective, while reducing the dose, in comparison with 

other administration routes [5,9-12]. Based on these results, 

epidurally-administered pregabalin could affect either the 

dorsal horn or the dorsal root ganglion directly and rapidly, and 

by doing so might augment efficacy, reduce the dosage, and 

minimize side effects. 

Although oral pregabalin is used safely, direct intrathecal or 

epidural administration causes the direct contact of the nerve 

with drugs; the possibility of other unknown side-effects should 

be kept in mind, if administration route is changed [13,14]. 

With regard to this concern, Hassenbusch et al. [14] suggested 

the minimal standard that should be met prior to clinical 

uses. This standard recommends that in preclinical studies on 

the neuraxial administration of drugs, experiments on both 

neurotoxicity and side effects are ‘essential’, whereas other 

experiments, such as action mechanisms, pharmacodynamics 

or effectiveness, are ‘recommended’. If neuraxial pregabalin 

induces neurotoxicity by direct contact with the nerves, it could 

never be used in clinical practice, regardless of its effectiveness. 

Therefore, pertinent neurological safety must be provided in 

advance.

The purpose of this study was to provide the neurological 

safety of the epidural administration of pregabalin and to 

establish the basis for further animal and clinical studies; 

accordingly, pregabalin was administered to the epidural 

space of rats and the neurotoxicity elicited via this route was 

evaluated by both behavior observation and histopathological 

examination.

Materials and Methods

The experimental protocol was approved by the Institutional 

Animal Care and Use Committee in the Clinical Research Institute 

of our university hospital.

Sixty male Sprague-Dawley rats of 180-230 g were used. 

Prior to the study, all rats had free access to food and water and 

were individually housed, under 12-h light/dark cycle, for 1 

week. 

Pregabalin was provided by the manufacturer (Pfizer, NY) 

as white crystalline powder without any additives, and epidural 

catheters were prepared by cutting polyethylene catheters, 

which had an outer diameter of 0.61 mm (PE-10: Natsume, 

Japan) and approximately 15 cm in length, with knotting in the 

3 cm area. 

For epidural catheterization, each rat was anesthetized using 

spontaneous inhalation of 2-3% sevoflurane in oxygen, through 

a loose-fitting facial mask. After depilation and disinfection of the 

back area, epidural catheterization was performed according to 

the previously used technique for small animals [15-18], with 

some modification; thus, a 2-3 cm midline incision was made 

at the L5-L6 intervertebral space for exposure of the ligamentum 

flavum, and a small hole was made with a micro-scissor at 

the center of the ligamentum flavum. The prepared epidural 

catheter was inserted through the hole and gently advanced 

about 3 cm cephalad, for the catheter tip to be placed in the L1 

region. The catheter entry site was sealed with α-cyanoacetylate 

(Aron-AlphaⓇ, Toagosei, Japan), and the wound was sutured 

layer by layer, after irrigation with saline. To confirm correct 

epidural placement of the catheter, 0.15 ml of 2% lidocaine was 

injected through the catheter after recovery from anesthesia; 

if the rat showed transient hind-limb paralysis, the catheter 

was regarded to be positioned in the epidural space. If sudden 

respiratory arrest was observed during lidocaine injection, the 

test solution was regarded to be injected either intrathecally 

or intravenously, and such cases were excluded from the 

study. In addition, the rats with aspiration of either blood or 

cerebrospinal fluid through the catheter, with leakage of drugs 

at the insertion area, or without any paralytic symptom in the 

hind limbs after lidocaine injection, were also excluded. After 

confirming correct epidural catheter placement, we observed 

the gait, spinal deformity, and behavioral abnormalities for 3 

days. If the rats showed no abnormal findings during the 3-day 

observation period, they were included in this study.

The rats were divided into 3 groups, according to the injected 

solution; group A was injected with 40% alcohol, group N was 

injected with saline, and group P was injected with 0.3 mg of 

pregabalin. The total injected volume was 0.3 ml, excluding 

the volume within the catheter. The study drugs were injected 

slowly under general anesthesia. After injection, the rats were 

individually housed under a 12-h light/dark cycle. 

Acute toxicity was evaluated on the 1st and 3rd days, and 

chronic toxicity on the 7th and 21st days after epidural injection 

of the study drugs. One examiner, who was unaware of the 

study groups, observed the motor and sensory deficits. To 

evaluate both motor and sensory deficits, the pinch-toe test 

was performed by applying pain in the hind sole of rats and 

observing the responses to avoid it [18-20]; thus, the hind sole 



59www.ekja.org

Korean J Anesthesiol Lee, et al.

was pinched with a pair of forceps (01-1155, Solco, Korea) 

for maximum 6 seconds and the test was repeated 3 times, at 

intervals of at least 5 minutes. Motor function was assessed 

using a previously devised scoring system [18,21]; grades were 

defined, as follows: grade 1 = normal gait, with no evidence 

of motor paresis; grade 2 = normal gait, with slight hind paw 

deformity, such as plantar flexion of toes; grade 3 = slight gait 

disturbance, with motor weakness and/or an inverted hind 

paw; and grade 4 = prominent limping gait, with a dropped hind 

paw. Animals scoring higher than grade 2 were considered to 

have motor deficit.

Following behavioral observation, spinal cords were har

vested on days 1, 3, 7 and 21 after drug administration, from 

5 rats of each group, for histological tests. Under sevoflurane 

general anesthesia delivered via facemask, euthanasia and 

fixation were simultaneously induced by transcardial perfusion 

with 4% paraformaldehyde solution, mixed with 0.1 M 

phosphate buffer. Approximately 1 cm length of lumbar spinal 

cord (i.e. where the catheter tip was located) was harvested 

and fixed in 10% neutral formalin solution. According to 

conventional tissue sample preparation methods, the fixed 

tissues were made as paraffin blocks, and 4-5 μm thick 

sections were prepared for the slides. Primarily, Hematoxylin-

eosin staining was performed to assess general histopathologic 

findings; then, four neurotoxicity categories were assessed, as 

previously reported: ① vacuolization of the dorsal funiculus, 

② chromatolysis of the motor neuron in the ventral horn, ③ 

neuritis, and ④ meningeal inflammation [18,22-24]. Among 

them, the vacuolization of the dorsal funiculus was subdivided 

into 4 grades: grade 0 = no vacuole, grade 1 = vacuoles observed 

in less than 10% of the dorsal funiculus surface, grade 2 = 

vacuoles observed in 10-50% of the surface, and grade 3 

= vacuoles observed in more than 50% of the surface. For 

further evaluation of myelin injury, Luxol fast blue staining 

was added. Next, the neurofilament immunochemical staining 

was performed for in-depth assessment of the degree of axonal 

injury. One pathologist, who did not know the group allocation, 

performed all histological evaluation. 

Intergroup comparisons of the body weight were analyzed 

using one way ANOVA on ranks, followed by the Duncan test. In 

all groups, the Fisher’s exact test and Bonferroni correction were 

performed to analyze the impairment of motor and sensory 

function and the histological tests. For all statistical analyses, 

the SPSS software version 13.0 (SPSS, Chicago, IL) was used, 

and a P value < 0.05 was considered as statistically significant.

Results

At first, 71 animals were enrolled in total; however, 8 rats died 

due to sudden respiratory arrest after lidocaine injection and 3 

rats in group A expired before the completion of the study. Thus, 

our final data were obtained from 60 rats. 

Any rats did not show abnormal behavior, such as aggressi

veness, severe crying, or excited behaviors, after the admini

stration of the study drugs. 

At 21 days after drug injection, the rats in group A showed 

decreased mean body weight, compared to the other two groups 

(Table 1).

The rats in groups P and N showed normal avoiding 

responses for the pinch-toe test and motor function of grade 1 

at all observation periods. However, in group A, 75% rats on the 

day 1 and 80% rats on the day 21 showed either insufficient or 

Table 1. Changes in the Rat Body Weight after Epidural Drug Injection

Day after epidural 
drug injection

Baseline
(n = 20/group)

1st day
(n = 20/group)

3rd day
(n = 15/group)

7th day
(n = 10/group)

21st day
(n = 5/group)

Group N
Group P
Group A

199.4 ± 19.2
200.3 ± 17.3
198.2 ± 22.4

200.6 ± 22.9
205.3 ± 21.2
202.0 ± 24.0

227.5 ± 10.8
230.3 ± 15.7
207.4 ± 18.3

272.0 ± 7.3
277.2 ± 12.8
250.8 ± 14.3

432.0 ± 25.0
440.2 ± 21.0
345.0 ± 17.0*

Values are expressed as mean ± SD. Group N: epidural injection of 0.3 ml of normal saline, Group P: epidural injection of 3 mg/0.3 ml of 
pregabalin, and Group A: epidural injection of 0.3 ml of 40% alcohol. *P < 0.05: group A vs. group N and group P.

Table 2. Evaluation of the Pinch-toe Test at Each Observation Point, after the Epidural Drug Injection

Day after epidural  
drug injection

1st day
(n = 20/group)

3rd day
(n = 15/group)

7th day
(n = 10/group)

21st day
(n = 5/group)

Group N
Group P
Group A

0 (0)
0 (0)

15 (75)*

0 (0)
0 (0)

13 (87)*

0 (0)
0 (0)
9 (90)*

0 (0)
0 (0)
4 (80)*

Values are expressed as number (%) of rats, out of the total number, which showed abnormal response. Group N: epidural injection of 0.3 ml 
of normal saline, Group P: epidural injection of 3 mg/0.3 ml of pregabalin, and Group A: epidural injection of 0.3 ml of 40% alcohol. *P < 0.05: 
group A vs. group N and group P.



60 www.ekja.org

Vol. 62, No. 1, January 2012The safety of epidural pregabalin 

no response for the pinch-toe test. In addition, at all observation 

times, all rats in group A showed gait abnormality and the hind 

limb deformity higher than grade 2 (Table 2 and 3)

The results of histological neurotoxicity assessed by light 

microscope were, as follows; in the N and P groups, the 

structure was well maintained, and there was no region sugges

ting neurotoxicity with chromatolysis of motor ganglions, 

vacuolization of the dorsal funiculus higher than grade 2, 

neuritis, or meningeal inflammation. In contrast, in group A, 

vacuolization was observed in all tissues (Table 4, Fig. 1 and 2). 

Neurofilament staining was performed for further evaluation 

of some tissues with equivocal vacuolization on the H&E stain; 

thus, in groups N and P, the axon injury was very scanty on the 

neurofilament staining. In contrast, significant degeneration 

and loss of axons was observed in the tissues of group A, with 

vacuolization of not only grade 2-3, but also grade 1 on the 

H&E stain (Fig. 3). In addition, both meningeal inflammation 

and neuritis were observed in tissues from the rats in group A, 

which was not detected in either group N or P (Fig. 4 and 5). 

Discussion

From our results, epidurally administered pregabalin did not 

cause any acute or chronic neurotoxicity in rats. 

Dose and volume are essential factors for adequacy of 

toxicity study. Considering an epidural dose of 1/10-1/30 of the 

oral dose, the maximal dose of epidural pregabalin in human is 

estimated at 20-60 mg. The applied dose in the present study 

could be regarded as the equivalent of 900 mg in a 60 kg adult; 

therefore, our study dose was 15-45 times higher than the 

dose expected to be used in clinical practice. In addition, the 

maximal dose of oral pregabalin previously used in rats was 30 

mg/kg [25-27]. From this, the epidural dose of pregabalin in 

the rat was estimated at 1-3 mg/kg. Taken together, the dose 

used in our experiment should be considered as sufficient for 

evaluation of neurotoxicity. In a previous study of epidural 

Table 3. Evaluation of the Motor Function at Each Observation Point, after Epidural Drug Injection

Day after epidural drug injection
1st day

(n = 20/group)
3rd day

(n = 15/group)
7th day

(n = 10/group)
21st day

(n = 5/group)

Group N

Group P

Group A

G1
G2-4
G1
G2-4
G1
G2-4

20 (100)
0 (0)

20 (100)
0 (0)
0 (0)

20 (100)*

15 (100)
0 (0)

15 (100)
0 (0)
0 (0)

15 (100)*

10 (100)
0 (0)

10 (100)
0 (0)
0 (0)

10 (100)*

5 (100)
0 (0)
5 (100)
0 (0)
0 (0)
5 (100)*

Values are expressed as number (%) of rats out of total. Group N: epidural injection of 0.3 ml of normal saline, Group P: epidural injection of 3 
mg/0.3 ml of pregabalin, Group A: epidural injection of 0.3 ml of 40% alcohol. G: grade of motor function, G1: normal gait, with no evidence of 
motor paresis; G2: normal gait, with slight hind paw deformity; G3: slight gait disturbance, with motor weakness and/or an inverted hind paw, 
and G4: prominent limping gait, with a dropped hind paw. *P < 0.05: group A vs. group N and group P.

Table 4. Neuropathological Findings of Spinal Cord and Surrounding Tissues under Microscopic Examination, after the Epidural Injection of Test Drugs

Group  

Grade

1st day† (n = 5) 3rd day† (n = 5) 7th day† (n = 5) 21st day† (n = 5)

0 I II III 0 I II III 0 I II III 0 I II III

Vacuolation

Chromatolysis

Neuritis

Meningeal inflammation

N
P
A*
N
P
A
N
P
A
N
P
A

5
5
0

0
0
3

0
0
2

0
0
0

5
5
0

0
0
0

0
0
2

0
0
3

5
4
0

0
1
0

0
0
2

0
0
3

4
4
0

1
1
0

0
0
1

0
0
4

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1

0
0
0
0
0

  3*
0
0

  2*

0
0
0
0
0

  3*
0
0

  3*

Values are expressed as number of positive rats out of the total. Group N: epidural injection of 0.3 ml of normal saline, Group P: epidural 
injection of 3 mg/0.3 ml of pregabalin, and Group A: epidural injection of 0.3 ml of 40% alcohol. The grade of the vacuolation was assessed with 
a four-point scale, 0: no vacuolation, I: < 10% area, II: 10-50% area, and III: > 50 % area of the dorsal funiculus vacuolated. *P < 0.05: group A 
vs. group N and group P. †Days after epidural drug injection. 
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Fig. 1. The degree of vacuolization in the dorsal funiculus. (A, B) Epidural injection of 0.3 ml of normal saline, (C, D) Epidural injection of 3 
mg/0.3 ml of pregabalin, and (E, F) Epidural injection of 0.3 ml of 40% alcohol. The pictures of (A-C) and (D) show no (A, C) or only mild (B, D) 
vacuolization. In contrast, the pictures of (E) and (F) show moderate and severe vacuolization, respectively. Hematoxylin and eosin stain.

Fig. 2. The degree of myelin loss in the dorsal funiculus. (A, B) Epidural injection of 0.3 ml of normal saline, (C, D) Epidural injection of 3 mg/0.3 
ml of pregabalin, and (E, F) Epidural injection of 0.3 ml of 40% alcohol. The pictures of (A-C) and (D) show normal morphology of myelin. In 
contrast, the pictures of (E) and (F) show severe myelin loss, presented as vacuolization on the previous hematoxylin-eosin stain. Luxol fast blue 
stain.



62 www.ekja.org

Vol. 62, No. 1, January 2012The safety of epidural pregabalin 

Fig. 3. The degree of axonal degeneration in the dorsal funiculus. (A, B) Epidural injection of 0.3 ml of normal saline, (C, D) Epidural injection 
of 3 mg/0.3 ml of pregabalin, and (E, F) Epidural injection of 0.3 ml of 40% alcohol. The pictures of (A-C) and (D) show no significant axonal 
degeneration, although (B) and (D) showed mild vacuolization on the hematoxylin-eosin stain. In contrast, (E) and (F) show significant axonal 
degeneration, with moderate and severe vacuolization seen, respectively, on the hematoxylin-eosin stain. Immunohistochemical stain with 
neurofilament antibody.

Fig. 4. The degree of meningeal inflammation. (A, B) Epidural injection of 0.3 ml of normal saline, (C, D) Epidural injection of 3 mg/0.3 ml of 
pregabalin, and (E, F) Epidural injection of 0.3 ml of 40% alcohol. The meninges of (A-D) are thin and show no infiltration of inflammatory cells. 
In contrast, the meninges of (E) and (F) are thickened and show heavy infiltration of inflammatory cells, such as neutrophils (black arrow). 
Hematoxylin and eosin stain.
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gabapentin, the study dose was calculated from the intrathecal 

dose [18]. However, such data was unavailable in the case of 

pregabalin. In addition, the dose used in our study did not 

induce any systemic toxic symptoms. Therefore, we consider 

that additional dose adjustments of toxicity study would not be 

required. 

The volume of drug should be also considered, because it is 

also essential in toxicity study. It has been shown that epidural 

administration of 0.1 ml in rats is equivalent to administration of 

10-15 ml in humans [15]. Similarly, a volume of 0.3 ml contrast 

medium was known to spread throughout the 10-11 segments 

of vertebra in rats; most other drugs would spread more widely, 

because they have lower viscosity than the contrast media [18]. 

In our study, the catheter tip was placed in the L1 area and 0.3 

ml pregabalin was administered; thus, pregabalin could spread 

at least from the 9th thoracic vertebra to the 6th lumbar vertebra 

and it was sufficient to examine the motor and sensory changes 

in the hind limbs innervated by the 3rd to the 6th lumbar nerve 

roots. Additionally, it was suitable for obtaining spinal cord 

tissue from the L1 area, where the tip of the catheter was placed. 

The pinch-toe test is a method to evaluate either the 

paralysis of hind limbs or the deterioration of nociperception 

in rodent study. The grade system used in our study was also 

used in the neurotoxicity study of Choi et al. [18], as well as 

in the study from Bajrovic and Sketelj [20]. In addition, motor 

function was assessed by gait patterns and the deformity of 

hind limbs as previously described [21], but only grade 1 was 

considered as normal, in order to increase test sensitivity. 

Moreover, histological tests are essential, because most organs 

have sufficient ability to overcome the damaged function; 

consequently, observing only the behavioral pattern may 

underestimate neurotoxicity [28]. Histological findings 

associated with neurotoxicity could be classified as nerve 

damage, gliosis, loss of myelin, and inflammation in the 

adjacent tissues [29]. Therefore, in our study, chromatolysis 

of motor nerve ganglions, vacuolization of the dorsal 

funiculus, and neuritis associated with abnormal infiltration 

of lymphocytes were assessed to determine the nerve 

damage, myelin loss, and inflammation in the adjacent tissue, 

respectively. Group A exhibited all neurotoxicity findings. 

Although grade 1 vacuolization was observed in some cases of 

the P group on the days 7 and 21 after drug administration, this 

finding was also detected in group N, which was the negative 

control group. Furthermore, on the neurofilament staining, 

the tissues with minimal vacuolization in groups P and N were 

similar to the normal tissues, but clearly distinguishable from 

group A. Therefore, we conclude that epidural administration 

of pregabalin did not induce nerve damage, as assessed both 

functionally and histologically. 

Neuraxial administration includes subarachnoid and 

epidural administration. Epidural administration has the 

advantage of acting on nerve ganglions passing through 

Fig. 5. Neuritis in the spinal neurons. (A, B) Epidural injection of 0.3 ml of normal saline, (C, D) Epidural injection of 3 mg/0.3 ml of pregabalin, 
and (E, F) Epidural injection of 0.3 ml of 40% alcohol. In (A-D) there is no infiltration of inflammatory cells. In contrast, (E and F) show heavy 
infiltration of inflammatory cells, such as neurophils (black arrow). Hematoxylin and eosin stain.
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the epidural space, hence the effect of the peripheral nerve 

block could be achieved simultaneously [8]. Therefore, it is a 

favored method in clinical practice. In the present study, the 

neurological safety of epidurally administered pregabalin was 

proven. However, it is controversial to extrapolate the results 

to the safety of the intrathecal administration. Moreover, in 

this study, a high dose of pregabalin was administered as a 

single dose, and thus it may not concur to the results of chronic 

epidural injection. 

Prior to clinical application, assessment of neurotoxicity 

of drugs in animal species which are closer to humans is 

recommended [13,14]. Therefore, based on our study, additional 

studies should be conducted to confirm safety at the standard 

at which it could be directly applied in clinical practice.

In conclusion, when pregabalin at 15 mg/kg dose was 

administered to the epidural space of rats, we found no neuro

toxic effects, assessed by both behavior observation and patho

histological examination. If the results of the neurological safety 

of pregabalin are proven in other animal species in the future, 

the epidural administration of pregabalin may improve treat

ment effectiveness.
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