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Background: The bispectral index (BIS) may be unreliable to gauge anesthetic depth 
when dexmedetomidine is administered. By comparison, the electroencephalogram (EEG) 
spectrogram enables the visualization of the brain response during anesthesia and may 
prevent unnecessary anesthetic consumption. 
Methods: This retrospective study included 140 adult patients undergoing elective crani-
otomy who received total intravenous anesthesia using a combination of propofol and 
dexmedetomidine infusions. Patients were equally matched to the spectrogram group 
(maintaining the robust EEG alpha power during surgery) or the index group (maintain-
ing the BIS score between 40 and 60 during surgery) based on the propensity score of age 
and surgical type. The primary outcome was the propofol dose. Secondary outcome was 
the postoperative neurological profile. 
Results: Patients in the spectrogram group received significantly less propofol (1585 ± 581 
vs. 2314 ± 810 mg, P < 0.001). Fewer patients in the spectrogram group exhibited delayed 
emergence (1.4% vs. 11.4%, P = 0.033). The postoperative delirium profile was similar be-
tween the groups (profile P = 0.227). Patients in the spectrogram group exhibited better 
in-hospital Barthel’s index scores changes (admission state: 83.6 ± 27.6 vs. 91.6 ± 17.1; dis-
charge state: 86.4 ± 24.3 vs. 85.1 ± 21.5; group–time interaction P = 0.008). However, the 
incidence of postoperative neurological complications was similar between the groups. 
Conclusions: EEG spectrogram–guided anesthesia prevents unnecessary anesthetic con-
sumption during elective craniotomy. This may also prevent delayed emergence and im-
prove postoperative Barthel index scores. 

Keywords: Anesthesia adjuvants; Bispectral index monitor; Consciousness monitors; Cra-
niotomy; Dexmedetomidine; Electroencephalography; Intravenous anesthesia.
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Introduction 

Dexmedetomidine has unique pharmacological effects, including anesthetic-sparing 
[1,2], postanesthetic recovery– facilitating [3], postoperative delirium–preventing [4], 
and potent anti-inflammatory effects [1,5]. Dexmedetomidine is often used in combina-
tion with other anesthetics, such as propofol, to provide multimodal general anesthesia 
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[6] and improve postoperative recovery [7]. Processed electroen-
cephalogram (EEG) indices such as the bispectral index (BIS), 
which uses an algorithm to analyze and interpret raw EEG data, 
are widely used tools for monitoring anesthetic depth [8]; howev-
er, processed EEG indices may be unreliable when dexmedetomi-
dine is administered because patients who received dexmedeto-
midine can present profound slow EEG oscillations (a low BIS 
score) but remains arousable [8–10]. 

Recently, we reported that the intraoperative co-administration 
of dexmedetomidine and propofol combined with goal-directed 
hemodynamic therapy may have neuroprotective effects, includ-
ing reducing postoperative neurological complications and pre-
venting postoperative delirium in patients undergoing craniotomy 
[1]. As a result, we have adopted this regimen as our institutional 
standard practice for such patients. Furthermore, we observed 
substantial propofol-sparing effects when dexmedetomidine and 
propofol were co-administered under the guidance of BIS value 
[1]. Because each anesthetic produces distinct brain states that are 
readily visible in an EEG spectrogram and can be easily interpret-
ed by anesthesiologists [8], anesthetic titration based on an EEG 
spectrogram may provide additional information for anesthetic 
depth monitoring and may avoid the conventional ‘one-index-
fits-all’ approach, which often ignores the influence of anesthetic 
drug combination [8,11]. Theoretically, the anesthetic exposure in 
cases that involve the coadministration of dexmedetomidine can 
be more precise through the use of an EEG spectrogram than the 
use of BIS value. Therefore, we have changed our institutional an-
esthetic propofol from BIS guidance to the EEG spectrogram 
guidance and we hypothesize that propofol consumption during 
craniotomy with total intravenous anesthesia using dexmedeto-
midine and propofol would be lower when general anesthesia is 
guided by EEG spectrogram than when it is guided by BIS values. 
Based on these context, this retrospective analysis was conducted 
to test our hypothesis and investigate the potential benefits of 
EEG spectrogram use on postoperative outcomes. 

Materials and Methods 

This retrospective observational cohort study was approved 
by the Research Ethics Committee of National Taiwan Univer-
sity Hospital (approval number: 202211078RINC; approval 
date: December 8, 2022) and was registered at clinicaltrials.gov 
(NCT05656547). The requirement for written informed con-
sent was waived by the research ethic committee. Adult patients 
undergoing elective craniotomy for brain tumor resection, aneu-
rysm clipping, intracranial bypass, or microvascular decompres-
sion who received intraoperative EEG spectrogram–guided total 

intravenous anesthesia with propofol and dexmedetomidine be-
tween January 1, 2021, and October 31, 2022, were identified 
from the institutional database. Identifying information was omit-
ted from the study, thus ensuring patient anonymity. Eighty pa-
tients undergoing craniotomy from our previous trial conducted 
between April 2017 and April 2020 who received intraoperative 
BIS score guided anesthesia using the same regimens [1], namely 
propofol and dexmedetomidine were identified as the control co-
hort for the present study. This study adhered to applicable 
STROBE guidelines [12]. 

Anesthesia 

The standardized institutional anesthetic protocol for craniot-
omy involves the administration of total intravenous anesthesia, 
utilizing a combination of propofol and dexmedetomidine. Prior 
to 2021, the anesthetic protocol relied on the intraoperative BIS 
value for management. In contrast, after 2021, the protocol shift-
ed to being guided by the EEG spectrogram. The specific details 
of these anesthetic protocols are outlined below: A BIS monitor 
was situated contralateral to the surgical side in an aseptic man-
ner. General anesthesia was performed and maintained by total 
intravenous anesthesia using a target-controlled infusion of 
propofol (Schnider model) with an initial dose of effect site con-
centration with 4.0–5.0 μg/ml during induction. Remifentanil in-
fusion or fentanyl boluses were administrated during surgery at 
the attending anesthesiologist’s discretion. The muscle relaxant 
was not added after anesthesia induction to facilitate the neuro-
physiological monitoring [13]. The attending anesthesiologist ti-
trated the propofol concentration to maintain the targeted anes-
thetic depth. Patients receiving BIS-guided anesthesia were 
placed into the index group titrating anesthetics to maintain a 
BIS value of between 40–60 [1]. Patients receiving EEG spectro-
gram–guided anesthesia were placed into the spectrogram group. 
In the EEG spectrogram-guided protocol, the anesthetic depth 
was managed based on the following principles proposed by our 
neuroanesthesia team: 

(1) Following anesthesia induction and prior to surgical stimu-
lation, the patient's maximal frontal alpha power occurring at the 
peak of the slow oscillation (referred to as the peak-max state) 
[14,15] was determined. This period was free of noxious stimuli, 
and the minimal target-controlled propofol infusion effect site 
concentration required to maintain the peak-max state was iden-
tified as the lower limit of propofol dose titration throughout the 
surgery (Fig. 1). We inferred that titrating the propofol dosage to 
maintain robust EEG alpha power as the peak-max state, which is 
the signature of propofol-based general anesthesia [8] as well as to 
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avoid burst suppression [16]. 
(2) Incremental doses of iv. propofol or remifentanil infusion, 

as well as additional iv. fentanyl boluses, were administrated to 
prevent sudden EEG spectrogram patterns coincident with nox-
ious stimuli, namely the beta arousal, delta arousal and alpha 
dropout [17]. The administration of incremental target-con-
trolled propofol infusion concentration or opioid boluses (Fig. 2) 
was at the discretion of the attending anesthesiologists, who 
based their decisions on the principle of differentiating between 
the loss of peak-max alpha power without obvious sources of 
noxious stimuli (indicating the need for more propofol) or the 
alpha dropout combined with beta/delta arousal patterns with 
obvious sources of increased noxious stimuli (e.g., scalp dissec-
tion) or with concurrent hemodynamic changes (indicating the 
need for more opioid). 

(3) An infusion of dexmedetomidine (0.5 mg/kg/h) was started 
immediately before anesthesia in each patient. Patients in the in-
dex group received a constant rate infusion (0.5 mg/kg/h) of dex-
medetomidine [1]. The dexmedetomidine infusion rate was also 
recommended to maintain the dose of 0.5 mg/kg/h in patients of 
the spectrogram group as we previously indicated potential neu-
roprotective effects and anti-inflammatory effects with this thera-
peutic dose [1,5]. However, because excessive dexmedetomidine 
may profoundly enhance the effects of propofol anesthesia and 
may markedly reduce the propofol-induced EEG alpha power 
[18], the infusion rate may be titrated in patients in the spectro-
gram group at the attending anesthesiologist’s discretion to main-

tain robust EEG alpha power and prevent excessively deep anes-
thesia in cases where the peak-max alpha power was not obtained 
after titrating down the propofol dose to the lowest acceptable 
limit (Fig. 3). 

For analgesia, each patient routinely received a scalp nerve 
block containing 10 ml of 0.5% levobupivacaine with a 1:200,000  
epinephrine mixture for each side of the scalp before the skin in-
cision [19,20]. Neurophysiological monitoring techniques were 
used to enhance surgical safety. The fourth-generation Vigileo/
FloTrac system (Edwards Lifesciences) was regularly employed to 
enhance intraoperative cardiac index; this was grounded in our 
prior positive outcomes with goal-directed fluid therapy for crani-
otomy [1,21], involving the iterative administration of 250 ml col-
loid infusions (Voluven® Fresenius Kabi) [1,22]. 

Postoperative care 

After surgery, all patients were immediately transferred to the 
same neurosurgical intensive care unit (ICU). We characterized 
“delayed emergence” when the patient’s record revealed the time 
gap between the end of surgery and the first motor response to 
command was greater than 30 minutes.  

Postoperative neurological complications were identified and 
characterized through an analysis of medical records. At our insti-
tution, specialized neurosurgeons and neurosurgical care-focused 
nurses conducted patient evaluations a minimum of two times 
per day. Any newly emerged postoperative neurological symp-

Fig. 1. Illustration of intraoperative anesthetic management aiming to maintain robust alpha power (peak-max pattern) in the encephalographic 
spectrogram. The most prominent alpha power and slow oscillation power were noted during the majority of the time period depicted in this figure. 
The first arrow (labelled "A") indicates the loss of the peak-max pattern of alpha power observed between 09:22-09:35, during which time the alpha 
power remained prominent, but the peak of the slow oscillation was lost. This was indicative of mild under-anesthesia. If no additional anesthetic 
had been administered, it would have progressed into the more obvious pattern of alpha dropout, as represented by the second arrow (labelled "B").

A B
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Fig. 2. Illustration of the administration of incremental target-controlled propofol infusion concentration or opioid boluses: The first arrow (labelled 
"A") represents a mild reduction in alpha power. After increasing the target-controlled propofol infusion effect site concentration, the alpha power 
returns to its prior level. The second arrow (labelled "B") shows a gradual increase in beta power (beta arousal), accompanied by a drop in alpha 
power, as well as increases in heart rate and arterial pressure. Following the administration of remifentanil boluses, the beta power decreases and the 
alpha power returns.

Fig. 3. Illustration that shows the administration of a titrated-down dose of dexmedetomidine to prevent excessive anesthesia depth. The attending 
anesthesiologist observed a decrease in alpha power, but the target-controlled propofol infusion effect-site concentration had already been titrated to 
the lower acceptable limit. As a result, the dexmedetomidine dose was reduced at 15:30 (indicated by an arrow marker and labeled as "A"). Following 
this adjustment, the alpha power was restored (the second arrow; labeled as "B").

toms and indicators were diligently recorded. Severe neurological 
complications were defined to include mortality, intracerebral 
hemorrhage necessitating surgical intervention, hydrocephalus 
requiring surgery, a Glasgow Coma Scale score of 13 or lower, 
failure to successfully transition off mechanical ventilation, and 
significant motor deficit (indicated by a reduction of at least 2 
points in the motor score) [1,23]. The modified Barthel Index was 

used to assess short-term neurological disabilities [24] which was 
routinely assessed upon administration and discharge. The occur-
rence of postoperative delirium was assessed at least twice daily to 
document any indicative signs in the neurosurgical ICU and ward 
at out institute. A trained physician, who was unaware of the pa-
tient's group allocation, meticulously reviewed the medical re-
cords and diagnosed delirium following the criteria outlined in 

A B

A B
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the Intensive Care Delirium Screening Checklist (ICDSC) for the 
analysis of the present study [25,26]. 

Statistical analysis 

To adjust for selection bias, 1:1 propensity score matching using 
the nearest neighbor method was performed using a logistic re-
gression model including age, body mass index and surgery type, 
factors that substantially influence the administration of anesthe-
sia and postoperative neurological outcomes [27,28]. To assess the 
effects of matching on the improvement of patient allocation bal-
ance, we calculated the standardized mean difference (SMD) [29]. 
Based on the pilot data, which consisted of the first 20 patients 
who received an EEG spectrogram-guided anesthesia protocol 
transition at our institute (and were not included in the analysis of 
the present study), the mean propofol dose was approximately 
1800 mg (with a standard deviation of approximately 500 mg). 
Notably, this was 500 mg lower than the mean propofol dose ad-
ministered to patients guided by the BIS value in our previous 
study [1]. A sample size of 60 patients per group is necessary to 
achieve a power of 0.9 and a two-sided type I error rate of 0.05. 
Fisher’s exact test or the Χ2 test was performed to analyze dichoto-
mous data, and Student’s t test and the Mann–Whitney U test 
were used for normally distributed continuous data and nonpara-
metric ordinal data, respectively. Statistical analyses were per-
formed using MedCalc Statistical Software version 20 (MedCalc 
Software Ltd.). 

Results 

In total, 98 patients who underwent elective craniotomy with 
EEG spectrogram–guided anesthesia at our center between Janu-
ary 2021 and October 2022 were enrolled in this study. Combined 
with the 80 patients in our previous report, a total of 178 patients 
were included for matching. Propensity score matching, in which 
the patients were matched 1:1 by age and operation time, yielded 
70 patients in the spectrogram group and 70 patients in the index 
group. Patient characteristics before and after matching are sum-
marized in Table 1. Following the matching process, the SMDs of 
the majority of baseline characteristics were reduced. Notably, the 
SMD of body mass index, which is a major factor influencing the 
intraoperative propofol dose, between the two study groups was 
significantly reduced, from 0.26 to 0.02. 

Intraoperative profiles 

The intraoperative profiles of the two groups are summarized 

Table 1. Patient Characteristics

Characteristic
Spectrogram 

group
(n =  70)

Index group
(n=  70) SMD

Age (yr)
 Before match 56.2 ±  15.1 55.5 ±  14.9 0.05
 After match 54.9 ±  14.2 56.1 ±  15.0 0.04
Sex (M)
 Before match 41 (41.8) 30 (37.5) 0.09
 After match 28 (40) 27 (38.6) 0.03
Body mass index (kg/m2)
 Before match 24.1 ±  4.2 25.4 ±  4.3 0.26
 After match 24.7 ±  3.7 24.6 ±  4.0 0.02
Education level (yr)
 Before match 12.4 ±  3.8 12.2 ±  3.9 0.06
 After match 12.4 ±  3.8 12.1 ±  4.0 0.09
ASA classification 
I
 Before match 11 (11.2) 5 (6.3) 0.18
 After match 5 (7.1) 4 (5.7) 0.06
II
 Before match 58 (59.2) 48 (60.0) 0.02
 After match 41 (58.6) 42 (60.0) 0.03
III
 Before match 33 (33.7) 27 (33.8) 0.01
 After match 24 (34.3) 24 (34.3) 0.00
Comorbidity 
Hypertension
 Before match 38 (38.8) 19 (23.8) 0.33
 After match 26 (37.1) 21 (30.0) 0.15
Coronary arterial disease
 Before match 6 (6.1) 4 (5.0) 0.05
 After match 2 (2.9) 3 (4.3) 0.07
Pulmonary disease
 Before match 5 (5.1) 5 (6.3) 0.05
 After match 3 (4.3) 3 (4.3) 0.00
Diabetes
 Before match 16 (16.3) 13 (16.3) 0.01
 After match 10 (14.3) 10 (14.3) 0.00
Other
 Before match 12 (12.2) 16 (20.05) 0.21
 After match 10 (14.3) 11 (15.7) 0.04
Surgery type
Tumor excision
 Before match 82 (83.7) 55 (78.6) 0.36
 After match 57 (81.4) 52 (74.3) 0.17
Aneurysm clipping
 Before match 4 (4.1) 11 (13.8) 0.34
 After match 3 (4.3) 8 (11.4) 0.27
Intracranial bypass
 Before match 3 (3.1) 8 (10.0) 0.28
 After match 3 (4.3) 6 (8.6) 0.17
Microvascular decompression
 Before match 9 (9.2) 6 (7.5) 0.06
 After match 7 (10.0) 4 (5.7) 0.16
Values are presented as mean ± SD or number (%). SMD: standardized 
mean difference, ASA: American Society of Anesthesiologists.
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in Table 2. The two groups had comparable operation times, 
blood loss, and transfusion profiles. Patients in the spectrogram 
group received significantly less propofol than did those in the in-
dex group (1585 ±  581 vs. 2314 ±  810 mg, respectively, P <  
0.001; Table 2). Patients in the index group received 0.5 μg/kg/h of 
dexmedetomidine, whereas patients in the spectrogram group re-
ceived 0.40 ±  0.11 μg/kg/h. The median (Q1, Q3) intraoperative 
BIS values were higher in the spectrogram group than in the in-
dex group [44 (41, 49) vs. 41 (37, 45), respectively, P <  0.001; Ta-
ble 2]. No significant differences in fentanyl equivalent doses were 
observed between the two groups (Table 2).  

Average intraoperative cardiac index, mean arterial pressure, 
and crystalloid solution volume values were similar between the 
groups (Table 2). By comparison, patients in the spectrogram 
group revealed a significant lower intraoperative heart rate (P =  
0.028). Intraoperative norepinephrine doses were not significantly 
different between the study groups (8.7±  16.1 vs. 4.4 ±  16.4 μg in 
the spectrogram and index groups, respectively, P =  0.117; Table 
2). Patients in the spectrogram group received significantly less 
nicardipine than did patients in the index group (median [Q1, 
Q3]; 0 [0, 0.7] vs. 2.0 [0.3, 5.5] mg, respectively, P <  0.001; Table 
2). Patients in the spectrogram group received significantly less 
colloid than did patients in the index group (405 ±  340 vs. 659 ±  
350 ml, respectively, P <  0.001; Table 2) and had a smaller medi-

Table 2. Intraoperative Profile
Intraoperative profile Spectrogram group (n =  70) Index group (n =  70) P value
Surgical profile
 Operation time (min) 241 ±  110 246 ±  105 0.804
 Blood loss (ml) 150 (50, 400) 125 (100, 300) 0.754
 Patient needing transfusion 11 (15.7) 13 (18.6) 0.823
 Red blood cell transfusion (unit) 0.7 ±  2.0 0.5 ±  1.1 0.398
Anesthetic profile
 Propofol dose (mg) 1585 ±  581 2314 ±  810 <  0.001
 Dexmedetomidine dose (μg/kg/h) 0.46 ±  0.09 0.5 (fixed dose) NA
 Fentanyl equivalence (μg) 200 (125, 1504) 250 (175, 733) 0.746
 Average bispectral index score 44 (41, 49) 41 (37, 45) <  0.001
Hemodynamic profile
 Average cardiac index (L/min/m2) 2.8 (2.5, 3.1) 2.7 (2.4, 3.4) 0.681
 Average mean arterial pressure (mmHg) 82.4 ±  8.5 84.5 ±  7.8 0.137
 Average heart rate (beats/min) 65 (58, 74) 71 (64, 78) 0.028
 Nicardipine dose (mg) 0 (0, 0.7) 2.0 (0.3, 5.5) <  0.001
 Norepinephrine dose (μg) 8.7±  16.1 4.4 ±  16.4 0.117
Fluid balance
 Crystalloid infusion (ml) 1693 (1210, 2180) 1784 (1250, 2276) 0.659
 Colloid infusion (ml) 405 ±  340 659 ±  350 <  0.001
 Urine output (ml) 800 (400, 1200) 1200 (800, 1825) <  0.001
Values are presented as mean ± SD, median (Q1, Q3) or number (%). NA: not applicable.

an (Q1, Q3). intraoperative urine output (800 [400, 1200] vs. 1200 
[800, 1825] ml, respectively, P <  0.001; Table 2). 

Postoperative outcomes 

Postoperative outcomes for each group are summarized in Ta-
ble 3. The median (Q1, Q3) number of days in hospital was 8 (6, 
10) in the spectrum group versus 9 (6, 14) in the index group (P 
=  0.098; Table 2). The number of days in the ICU was similar be-
tween the groups. The incidence of postoperative neurological 
complications was similar between the groups. 

The percentage of patients with delayed emergence was lower 
in the spectrogram group than in the index group (1.4% vs. 
11.4%, P =  0.033; Table 3). Regarding postoperative delirium, one 
patient in the spectrogram group and two patients in the index 
group could not be assessed because they were comatose. The two 
groups had comparable postoperative delirium profiles. In total, 2 
patients in the spectrogram group and 4 patients in the index 
group had an ICDSC score ≥ 4 (delirium), and 64 and 58 patients 
in the spectrogram and index groups, respectively, had an ICDSC 
score of 0 (P =  0.227). The in-hospital Barthel's index scores 
showed more favorable changes in the spectrum group compared 
to the index group. Specifically, at admission, the scores were 83.6 
±  27.6 in the spectrum group and 91.6 ±  17.1 in the index group. 
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Table 3. Postoperative Outcomes
Postoperative outcome Spectrogram group (n =  70) Index group (n =  70) P value
Hospital stay (day) 8 (6, 10) 9 (6, 14) 0.098
ICU stay (day) 1 (1, 2) 1 (1, 2) 0.372
Neurological complications
 Total number 12 (17.1) 18 (25.7) 0.303
 Severe complication 4 (5.7) 9 (12.9) 0.243
Delayed emergence 1 (1.4) 8 (11.4) 0.033
Delirium profile n=  68* n=  68* 0.227
 ICDSC score=  0 (no delirium) 64 (94.2) 58 (85.2)
 ICDSC score 1–3 (subclinical delirium) 2 (2.9) 4 (5.9)
 ICDSC score≥4 (delirium) 2 (2.9) 6 (8.9)
Barthel index Group by time interaction P value =  0.008
 Admission 83.6 ±  27.6 91.6 ±  17.1
 Discharge 86.4 ±  24.3 85.1 ±  21.5
Values are presented as median (Q1, Q3), number (%) or mean ± SD. *One patient in the spectrogram group and two patients in the index group 
could not be assessed because they were comatose. ICU: intensive care unit, ICDSC: intensive care delirium screening checklist.

At discharge, the scores were 86.4 ±  24.3 in the spectrum group 
and 85.1 ±  21.5 in the index group. The group-time interaction 
analysis revealed a significant difference between the two groups 
(P =  0.008; Table 3). 

Discussion 

In the present study, we observed that anesthetic doses were 
markedly lower in patients receiving EEG spectrogram– guided 
anesthesia than in those receiving BIS value–guided anesthesia. 
The reduced anesthetic dose appears to correlate with a lower in-
cidence of delayed emergence and higher Barthel index scores at 
discharge and may reduce postoperative subsyndromal delirium. 

Coadministration of dexmedetomidine is effective in lowering 
propofol requirements for total intravenous anesthesia [30]. Ac-
cordingly, our previous study indicated that the coadministration 
of dexmedetomidine led to a propofol dose reduction of approxi-
mately 20% based on BIS value–guided anesthesia [1]. Further-
more, the scalp block was applied in each patient and this mark-
edly reduced anesthetic requirement [31]. The present study indi-
cates that an EEG spectrogram–guided anesthetic protocol elicits 
additional propofol-sparing effects (approximately overall 31.5%) 
compared with a BIS value– guided anesthetic protocol. The me-
dian averaged BIS values in the spectrum group were maintained 
only 10% higher than the average value maintained in the index 
group. Several factors may cause erroneous BIS scores and the 
large differences in anesthetic doses. First, electromyographic ar-
tefacts resulting from electrocautery at the surgical site and cranial 
nerve stimulator may cause transient increase BIS index values 

(we provided an example in the Supplementary Fig. 1) [32,33]. 
Second, dexmedetomidine may also affect BIS values. Kasuya et 
al. [34] observed lower BIS values at a given observational seda-
tion level in volunteers sedated with dexmedetomidine than in 
those sedated with propofol. Similarly, Xi et al. [35] observed low-
er BIS values in patients sedated with dexmedetomidine than in 
those sedated with propofol at moderate and deep sedation levels. 
Dexmedetomidine may induce slow EEG oscillations, thereby re-
ducing BIS values at a given sedation level. This may explain why 
BIS values for both groups in the present study were relatively low. 
In addition, we observed that the range of the average BIS values 
was wider in the spectrogram group compared to the index group, 
with values ranging from 27 to 72 in the spectrogram group and 
31 to 56 in the index group. Furthermore, it's important to note 
that the averaged BIS value was calculated in 5-minute intervals 
from the electronic medical records, rather than being an average 
of continuous data. As a result, the BIS data provided in the pres-
ent study may potentially underestimate the true difference be-
tween spectrogram-guided anesthesia and index-guided anesthe-
sia. This finding highlighted that by monitoring the EEG spectro-
gram, anesthesiologists may not strictly adhere to maintaining the 
BIS value within the common recommended 40–60 range and 
this approach of using EEG spectrogram guidance appears to be 
effective in reducing unnecessary intraoperative anesthetic re-
quirements during craniotomy. 

In addition, propofol doses varied less in the spectrogram 
group than in the index group, suggesting that EEG spectrogram–
guided anesthesia facilitated a more accurate propofol titration 
than did BIS value–guided anesthesia. The anesthetic-sparing ef-
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fect of EEG spectrogram–guided anesthesia was also observed in 
a trial involving children by Long et al. [36], in which the EEG 
spectrogram–guided protocol required 10% less sevoflurane than 
did the standard care protocol. The anesthetic-sparing effect is 
more prominent in our study than in that by Long et al., possibly 
because the present study coadministered two hypnotic agents, 
whereas only one hypnotic agent, sevoflurane, was administered 
in the study by Long et al. This emphasizes the necessity of having 
an EEG spectrogram available in the context of multimodal gen-
eral anesthesia [6]. 

In the present study, we observed several favorable postopera-
tive outcomes, including the prevention of delayed emergence, 
better Barthel index scores, and prevention of subsyndromal de-
lirium among patients in the spectrogram group. Dutta et al. [30] 
reported that the administration of dexmedetomidine in combi-
nation with propofol in BIS value–guided anesthesia significantly 
reduced the propofol requirement but increased the risk of early 
postoperative sedation. In the present study, patients receiving 
EEG spectrogram–guided anesthesia were less likely to experience 
delayed emergence than were those receiving BIS value–guided 
anesthesia, possibly because of the reduced propofol dose. The 
prevention of delayed emergence is crucial for patients undergo-
ing craniotomy for early neurological assessment and immediate 
optimization of treatment after surgery. This may contribute to 
the better in-hospital Barthel index change in the spectrogram 
group. 

The use of processed EEG indices monitor aims to precisely 
control the anesthetic depth and this often is related with a reduc-
tion of anesthetic dosage in real world practice [37,38]. Further-
more, there is a great interest of application of the EEG monitor-
ing to prevent postoperative delirium [39]. However, one of the 
current landmark trial, namely the ENGAGE trial, revealed that 
use of BIS value to guide anesthesia reduces intraoperative anes-
thetic consumption by up to 0.11 minimum alveolar concentra-
tion but does not prevent postoperative delirium [40]. In the post-
operative delirium substudy of BALANCE trial, the postoperative 
delirium incidence was lower among patients received a lighter 
anesthesia (BIS 50) than those received a deeper anesthesia (BIS 
35) [41]. Although the spectrum group received substantially less 
(35%) propofol than did the index group, the incidence of postop-
erative delirium was the same for both groups. Patients undergo-
ing craniotomy may be more susceptible to postoperative deliri-
um than patients undergoing other types of surgery because cra-
niotomy causes cerebral injuries such as neuroinflammation, focal 
tissue ischemia, and tissue edema [42,43]. Therefore, a reduction 
in anesthesia alone is not sufficient to prevent delirium after cra-
niotomy. However, no patient in the spectrogram group and five 

patients in the index group (0% vs. 7.4%) had subsyndromal de-
lirium (ICDSC score of 1–3). Intraoperative low frontal EEG al-
pha power is associated with postoperative subsyndromal deliri-
um [44] and propofol reduces EEG alpha power [45]. Therefore, 
propofol dose may be correlated with the incidence of subsyndro-
mal delirium. As postoperative subsyndromal delirium prognos-
ticates poor outcomes [46], an EEG spectrogram–guided anes-
thetic protocol may be beneficial to prevent this complication for 
patients undergoing craniotomy. However, we observed no signif-
icant differences in postoperative neurological complication be-
tween the two groups because neurological complications in pa-
tients undergoing craniotomy are more likely to be related with 
the surgery than the anesthesia. 

Regarding the intraoperative hemodynamic profiles, patients in 
the spectrogram group required less colloid to maintain intraop-
erative cardiac output than did those in the index group, possibly 
because the spectrum group received less propofol. As the propo-
fol concentration increases, the mean systemic filling pressure in-
creases [47], and the venous return decreases [48] which requires 
amount of intravenous fluid required to maintain cardiac output. 
However, intraoperative fluid requirement may be related with 
more complex interactions between hemodynamic Dexmedeto-
midine induces biphasic changes in arterial pressure with both 
hypertensive and hypotensive effects; a high maintenance dose 
may induce higher arterial pressure than a low maintenance dose 
[49]. Patients in the spectrogram group received a smaller main-
tenance dose of dexmedetomidine than did those in the index 
group and therefore required less intraoperative nicardipine than 
did patients in the index group. 

This study has several limitations. First, maintaining the alpha 
power was a qualitative rather than a quantitative goal and the 
values of alpha power was not allowable to be exported from the 
EEG device. Therefore, it is unable to compare the alpha power 
between the two study groups. Furthermore, despite the proposal 
of the EEG spectrogram-guided protocol, calculating the actual 
protocol compliance was challenging due to the retrospective de-
sign. Second, there is an age-dependent decline in alpha power of 
the EEG. As the average age of our cohort was below 60 years old, 
our protocol and results should not be completely extrapolated to 
the geriatric population. Third, intraoperative nociception may 
not be optimally monitored by the combination of EEG spectro-
gram and hemodynamic changes [17], and thus we considered 
the implication of scalp block crucial in our protocol to reduce in-
adequate nociception control. Hence, our protocol may not be 
suitable for patients who did not receive a scalp block. Forth, we 
did not have sufficient resources to save the details of EEG data. 
Relevant parameters, such as the intraoperative burst suppression 
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time, were not available. However, because the spectrogram group 
received less propofol, we assumed that the spectrogram group 
had a lower accumulated suppression time than did the index 
group. Fifth, he primary outcome of the present study is propofol 
consumption. Secondary outcomes, including the incidence of 
postoperative delirium and the length of hospital stay, were not 
sufficiently powered to detect significant differences. Further-
more, the retrospective design may increase the risk of unex-
plored factors influencing outcomes other than the anesthetic 
consumptions such as the differences in the Barthel indices as well 
as the differences in intraoperative iv. fluid requirements. Sixth, 
the surgical type was not optimally balanced between the two 
study groups. For instance, there were more patients undergoing 
aneurysm clipping in our previous trial (index group) than in the 
spectrogram group. This difference may be attributed to the 
growing trend towards using endovascular coiling instead of sur-
gical clipping for the treatment of unruptured cerebral aneurysms 
in recent years [50]. Consequently, fewer patients in the spectro-
gram group (where surgery was performed in a more recent peri-
od) underwent aneurysm clipping. Furthermore, electroencepha-
lographic spectrogram-guided anesthesia is a relatively new clini-
cal practice, resulting in a relatively small number of patients in 
the spectrogram database at our institute, making it challenging 
to achieve optimal matching. Despite these challenges, the SMD 
of the surgical type still decreased after the matching process. The 
primary outcome, namely the propofol dose, was more closely re-
lated to age and body mass index than the surgical type [27,28], 
and the SMDs of age and body mass index were below 0.1, indi-
cating good balanced matching [29]. 

In conclusion, this study demonstrated that for patients under-
going craniotomy and receiving total intravenous anesthesia using 
dexmedetomidine and propofol, less propofol is required when 
anesthesia administration is guided by an EEG spectrogram than 
when it is guided by a BIS monitor. Precise anesthetic dosing may 
also prevent delayed emergence, improve postoperative Barthel 
index scores, and reduce intraoperative fluid requirements.  
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