Korean J Anesthesiol Search

CLOSE


Korean Journal of Anesthesiology 2004;47(4):580-584.
DOI: https://doi.org/10.4097/kjae.2004.47.4.580   
The Changes in Serum and Cerebrospinal Fluid Ca2+, Mg2+, and Ca2+/Mg2+ Ratio in Neuropathic Rats.
Sung Moon Jeong, Chul Ho Park, Jin Woo Shin, Jeong Gil Lim, Chung Lee, Sung Min Han
Department of Anesthesiology and Pain Medicine, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Korea. jinwoos@amc.seoul.kr
Abstract
BACKGROUND
Central sensitization of neuropathic pain is associated with an influx of extracellular calcium via the opening of N-methyl-D-aspartate (NMDA) receptor-gated ion channels, which is usually blocked by a magnesium plug. Many studies have found that intrathecal or intraperitoneal magnesium suppress neuropathic pain. Therefore, it is possible that serum and cerebrospinal fluid Ca2+, Mg2+, and Ca2+/Mg2+ ratio are changed in neuropathic pain. The purpose of this study was evaluated changes in serum and cerebrospinal fluid Ca2+, Mg2+, and Ca2+/Mg2+ ratio in neuropathic rats.
METHODS
Male Sprague-Dawley rats were prepared with tight ligation of the left lumbar 5th and 6th spinal nerves to produce neuropathic pain. The threshold of mechanical allodynia was evaluated by the up-down method using withdrawal response to a von Frey filaments stimulus on the 3rd, 7th, and 14th day. Rats with a threshold of less than 4 gram were selected as the experimental group. On the 16th day, serum and cerebrospinal fluid Ca2+, Mg2+, and Ca2+/Mg2+ ratio were measured. Experimental group data were then compared with those of an unoperated control group and an unligated sham group; each group contained 10 animals.
RESULTS
No statistic differences were found between groups. CONCLUSIONS: Our results suggest that serum and cerebrospinal fluid Ca2+, Mg2+, and Ca2+/Mg2+ ratio in neuropathic rats do not differ from those of normal rats because of physiologic homeostasis is maintained by active transport through the blood-brain-barrier despite of activation of NMDA receptor-gated ion channels. However, we believe that the Mg2+ ion-dependent voltage-gating in rats with neuropathic pain may be deficient in a chronic condition due to a decreased Mg2+ binding affinity of the NMDA receptor-gated channel, as has been found in hippocampal granule cells in epileptic rats.
Key Words: Ca2+/Mg2+ ratio; calcium; magnesium; neuropathic pain


ABOUT
ARTICLE CATEGORY

Browse all articles >

BROWSE ARTICLES
AUTHOR INFORMATION
Editorial Office
101-3503, Lotte Castle President, 109 Mapo-daero, Mapo-gu, Seoul 04146, Korea
Tel: +82-2-792-5128    Fax: +82-2-792-4089    E-mail: journal@anesthesia.or.kr                

Copyright © 2024 by Korean Society of Anesthesiologists.

Developed in M2PI

Close layer
prev next